
h t t p : / / c i s r . n p s . n a v y . m i l

December 2002

 | white paper

The Center for INFOSEC Studies and Research

An Editor for Adaptive XML-Based
Policy Management of IPsec

Raj Mohan, Timothy E. Levin, Cynthia E. Irvine

Center for Information Systems Security Studies and Research

Computer Science Department

Naval Postgraduate School

Monterey, California 93943

An Editor for Adaptive XML-Based Policy Management of IPsec

Raj Mohan Timothy E. Levin Cynthia E. Irvine
Indian Army Naval Postgraduate School Naval Postgraduate School

rmohan@nps.navy.mil televin@nps.navy.mil irvine@nps.navy.mil

Abstract

TCP/IP provided the communications foundation for the
Internet and the IPsec protocol now promises to enable
the desired security strength. IPsec provides users with a
mechanism to enforce a range of security services for
both confidentiality and integrity, enabling them to
securely pass information across networks. Dynamic
parameterization of IPsec further enables security
mechanisms to adjust the level of security service “on-
the-fly” to respond to changing network and operational
conditions. The IPsec implementation in OpenBSD works
in conjunction with the Trust Management System,
KeyNote, to achieve this. However the KeyNote engine
requires that an IPsec policy be defined in the KeyNote
specification syntax. Defining such a dynamic security
policy in the KeyNote Policy Specification language is,
however, complicated and could lead to incorrect
specification of the desired policy, thus degrading the
security of the network. We present an alternative XML
representation of this language and a graphical user
interface to create and manage a consistent and correct
security policy. The interface has the simplicity of a
simple menu-driven editor that not only provides KeyNote
with a policy in the specified syntax but also integrates
techniques for correctness verification and validation.

1 Introduction

1.1 Objective

Network Protocols such as IPsec and trust
management systems like Keynote provide mechanisms
to secure computer-to-computer communications. These
tools enable the user to use various encryption and
authentication mechanisms to ensure confidentiality,
integrity and non-repudiation of communications.
Dynamic parameterization [1] of IPsec further enables
security mechanisms to adjust the level of security service
“on-the-fly” to respond to changing network and
operational conditions. The trust management system,
Keynote specifies a language for describing actions, which
are operations with security consequences that are to be
controlled by the system [3][4][5]. The language also
provides the syntax for specifying the application
policies, which govern the actions that the principals are

authorized to perform. To translate a dynamic
organizational security policy into the Keynote
specification language is however a daunting task due to
the complexities of the language and the policy. An
incorrect specification of the security policy might result
in a compromise of network security. It is in this context
that the need for an alternative policy specification
mechanism is perceived. This mechanism should enable
the user to clearly and correctly specify the policy and
also verify that the specified policy is free of
inconsistencies and contradictions. The purpose of this
work is to analyze, design and implement a policy editor
interface that guides a user to specify various attributes of
the IPsec security policy. The policy is stored in an
intermediate XML format. The program will
automatically generate the equivalent policy in the
Keynote specification language. A presentation
mechanism will be described for providing the user with
an intuitive presentation that can be helpful in preventing
inconsistencies and contradictions in the specified policy.

1.2 Background

The increased dependence on computers for
communication has enhanced the importance of network
security. The use of the inherently insecure Internet as the
medium for communicating sensitive material requires
that the end users have capabilities to ensure that the data
transmitted is secure. Furthermore, network
administrators should have means to translate the desired
organizational security policy into an automated security
policy and have mechanisms to implement this policy
over their network.

IPsec extends the IP Protocol to enable security for
TCP/IP communications. IPsec provides both secrecy and
integrity services. A wide variety of choices are available
when establishing protected communications across the
network. The appropriate choice and combination of
secrecy and integrity mechanisms will depend upon the
“trust relationships” between the communicating entities.
Those relationships are constrained by the policy of each
entity. Negotiation of policy and mechanisms takes place
in the context of the Internet Key Exchange (IKE)
framework and the Internet Security Association and Key
Management Protocol (ISAKMP) [13]. However, IKE and
ISAKMPD do not provide a general mechanism for
managing and incorporating security policy. In order to
ensure that IPSEC consistently meets the local security
policy needs of the user, a Trust Management System

may be used to encode policy and support
communications security negotiation and management
[17].

A trust management system unifies the elements of
security policy, credentials, access control, and
authorization. The IPsec implementation in OpenBSD
utilizes a trust management system to manage security
according to policy [2]. Applications can use the Keynote
trust management system to verify, through the
compliance checker, whether a requested policy addition
or change is authorized [6].

Quality of Security Service (QoSS) provides a means
to manage security services based on the requirements set
by the user’s requests, the system’s security policy, the
availability of system resources and the network
environment [9]

Dynamic parameterization of IPsec [1] provides more
granularity in IPsec and provides flexibility to adjust
security controls according to changes in threat
conditions, critical time transmissions, and network
congestion/traffic. This makes IPsec a QoSS mechanism.

All the above mechanisms depend on having in place a
correct security policy specified in the Keynote
specification language. For any practical real life network
operations specifying such a dynamic and granular policy
is an almost insurmountable task due to the syntactic
complexity of the KeyNote language and the inherent
complexity of the policy logic involved. An XML-based
specification of the policy should provide the desired
flexibility, be easy to use and support an interface for
administration of the security policy. This would provide
an abstraction to the KeyNote language and enable users
to better utilize the power of IPsec and KeyNote in
managing network security [14].

1.3 Expected Benefits

By providing a policy management toolkit it will be
possible to unleash the power of IPsec usage and will
enable government and military security systems to
automate security service adjustments according to
dynamic environmental parameter settings, such as
INFOCON and THREATCON. The use of XML in such
an effort will enable common use of available XML tools
for ensuring security policy consistency and also utilize
the flexibility and compatibility that XML provides. The
power of XML security can also be harnessed to enhance
the overall security of the communicating systems. An
easy to use interface ensures its use and the resulting
policy correctness will provide confidence in the overall
security implementation of the network.

1.4 Organization of this Paper

The paper will be organized as follows: Section 2,
Related Work, consists of a brief survey of related
research. Section 3, Keynote Support for QoSS, reviews
the Keynote language and its specification for the QoSS
implementation in OpenBSD 2.8. Section 4, XML and

Policy Representation, describes XML technologies and
their application to the problem domain. Section 5,
Design and Implementation, presents the design
philosophy of the toolkit, the considerations and overall
architecture will be discussed in detail. Implementation
issues of the components will be highlighted in this
section. Section 6 describes future work and Section 7
summarizes our results.

2 Related Work

2.1 IPsec

The popularity of the Transfer Control Protocol/
Internet Protocol (TCP/IP) and the growing use of
computer networks for governmental and business made
these protocols vulnerable to scrutiny, attacks and misuse.
TCP/IP, which was designed to provide packet based
communications over unreliable telephone networks, was
not designed for providing secure communications. The
first attempt to provide security involved a simple
“protect-all” approach to network security i.e. the Virtual
Private Networks (VPN). IPsec was then developed to
address security vulnerabilities inherent in the Internet
Protocol (IP), by defining a more flexible security
mechanism for sending data across an insecure medium.
IPsec introduced the ability to provide a range of security
services ultimately defined by a security policy (See
Figure 1). The security policy defines specific security
services for each packet, according to packet characteristics
such as source and destination addresses [11].

IPsec provides security services at the IP layer by
enabling a system to select required security protocols,
determine the algorithm(s) to use for the service(s), and
put in place any cryptographic keys required to support
the requested services. There are two extension headers
that follow the main IP header and which incorporate the
security features of IPsec. The extension header for
authentication is known as the Authentication Header
(AH) and that for encryption is known as the
Encapsulating Security Payload (ESP) header. The
difference between the AH and the authentication within
ESP is essentially the amount of content of the packet
and headers that is authenticated. Figure 2 and Figure 3
depict the coverage of ESP and AH respectively.

IPsec was designed to provide an efficient and effective
cryptographic security mechanism for IP version 4 and IP
version 6. The mechanism provides the following
services: access control, connectionless integrity, data
origin authentication, protection against replays,(a form of
partial sequence integrity), confidentiality (encryption),
and limited traffic flow confidentiality. These services are
applied at the IP layer, providing security for IP and/or
upper layer protocols [12][18]. The cryptographic
algorithms are applied in accordance with system security
policies that are defined within IPsec. IPsec can be used
on a variety of system architecture models: host-to-host,
gateway-to-gateway and gateway-to-host/host-to-gateway
[8].

IP HEADER

DATA

ESP TRAILER

ESP HEADER

ENCRYPTED

AUTHENICATED

ESP- Protected IP Packet

Figure 1. ESP- Protected IP Packet. (After: [8] p. 49)

IP HEADER

DATA

AH TRAILER

AH HEADER
AUTHENTICATED

AH- Protected IP Packet

Figure 2. AH-Protected IP Packet. (After: [8], p. 51)

2.1.1 Security Associations. A key concept that appears
in both the authentication and confidentiality mechanisms
for IP is the Security Association (SA). An association is
a one-way relationship between the sender and a receiver
that affords security services to the traffic carried on it. If
a peer relationship is needed for two-way secure exchange,
then two security associations are required. A Security
Association is uniquely defined by three parameters:
Security Parameters Index (SPI), IP destination address,
and Security protocol identifier.

2.1.2 SA Selectors. IPsec provides the user with
considerable flexibility in the way in which IPsec services
are applied to IP traffic. SAs can be combined in a
number of ways to yield the desired security
configuration. Furthermore, IPsec provides a high degree
of granularity in discriminating between traffic that is
afforded IPsec protection and traffic that is allowed to
bypass IPsec, in the former case relating IP traffic to
specific SAs.

The means by which IP traffic is related to specific
SAs (or no SAs in the case of traffic allowed to bypass

IPsec) is the nominal Security Policy Database (SPD).
Each SPD entry is defined by a set of IP and upper-layer
protocol field values, called selectors. In effect, these
selectors are used to filter outgoing and incoming traffic
in order to map it into a particular SA. Selectors are of
many types for e.g. destination IP address, transport layer
protocol, IP Sec protocol (AH or ESP or AH/ESP),
source and destination ports etc.

2.2 Keynote trust management system

OpenBSD IPsec incorporates the concept of trust and
security policy management by implementing KeyNote.
The research utilizes the OpenBSD IPsec mechanism as a
model for discussion and implementation. Figure 7
depicts the KeyNote trust management process.

KeyNote is a simple and flexible trust-management
system designed to work well for a variety of large- and
small- scale Internet-based applications. It provides a
single, unified language for both local policies and
credentials. KeyNote policies and credentials, called
`assertions’; contain predicates that describe the trusted
actions permitted by the holders of specific public keys.
KeyNote assertions are essentially small, highly
structured programs. A signed assertion, which can be
sent over an un-trusted network, is also called a
`credential assertion'. Credential assertions, which also
serve the role of certificates, have the same syntax as
policy assertions but are also signed by the principal
delegating the trust.

In KeyNote:
• Actions are specified as a collection of name-value

pairs. For instance a name value pair could be
app_dom = ”email”. These are called as action
attributes and a query is made with the action
attributes and their associated values.

• Principal names can be any convenient string and can
directly represent cryptographic public keys.

• The same language is used for both policies and
credentials.

• The policy and credential language is concise, highly
expressive, human readable, and compatible with a
variety of storage and transmission media, including
electronic mail.

• The compliance checker returns an application-
configured `policy compliance value' that describes
how a request should be handled by the application.
Policy compliance values are always derived from
policy and credentials, facilitating analysis of
KeyNote-based systems.

• Compliance checking is efficient enough for high-
performance and real-time applications.

Despite these advantages, the KeyNote Policy
language has some technical challenges regarding
understandability of complex policies, which are
described in later sections.

Keynote

IKE SA protected
Negotiations
communications

Pass proposed
IPsec SA

KeyNote is queried using
assertion syntax to determine
if proposed SA is valid IAW
security policy

Security
Policy

IKE Daemon

KeyNote
Interface

Figure 3. KeyNote Process (After [1])

2.3 Quality of Security Service (QOSS)

IPsec provides a high degree of granularity in
discriminating between traffic that is afforded IPsec
protection and traffic that is allowed to bypass IPsec.
Further use of a trust management system such as
Keynote enables an application to simply ask the
compliance checker whether a requested action should be
allowed. Thus if we specify a granular security policy as
permissible by IPsec and use Keynote to verify a request
based on the policy, we would be able to modulate the
security settings of applications dynamically in
accordance with the security and performance requirements
of the applications in particular, and networks as a whole.
This is the essence of ‘Quality of Security Service’
(QoSS).

Similar to the modulation of resources to support
QoS, security services can be defined in terms of user and
system requirements, network environment factors and
available resources. Without a range of security services,
a user is faced with the rigid and limited choice of “all or
nothing” for each security service. Historically, security
services have been provided in such a static manner [16].
Quality of Security Service (QoSS) provides a more
flexible solution to the provision of security services. The
security resource manager and/or the security system can
adjust security service to meet user requirements, system
security policy and network environment constraints [9].

QoSS has several mechanisms to handle security
variablity. A security variance for a particular policy
exists when that policy may be enforced utilizing a
specific range of security attributes. Therefore, based on
the policy parameters, the attributes used to enforce the
security policy may differ according to selection criteria
such as “network mode.” Fixed requirements are used to
set minimum level acceptable security standards. A range
of security settings meeting or exceeding this minimum
level can be provided. For example a system may utilize
SHA as a minimum level authentication algorithm for all

message handling. Users or applications could apply
further granularity in support of confidentiality to
messages by selecting an encryption algorithm from a
provided range. Other examples of variable security
attributes that may be used are: assurance level, key
length or security attribute expiration date stamp [9].

2.3 .1 Dynamic Parameters and Network Modes.
Government and DOD organizations utilize a variety of
dynamic parameters to define a predefined response of
specific actions according to policy. Examples include
INFOCON and THREATCON levels. In order for a
security mechanism to be fully functional within the
DOD and Government infrastructure, it has to be able to
incorporate the dynamic parameters into the security
setting decision-making process. A change in an
INFOCON or THREATCON level should have an
immediate effect on attributes and settings in a security
mechanism. By introducing a dynamic mechanism, a
system can modulate its security settings in response to
these dynamic parameters. Security level and network
mode, defined in the following sections, have been
chosen as two abstract dynamic parameters that govern
changes to security attributes as defined in the
organization’s security policy [15].

In the approach described here dynamic network
parameters are represented as network modes. We use the
following network modes: normal, impacted, and crisis.
Normal mode is defined as ordinary operating conditions
with normal traffic load and no heightened threat
conditions. Impacted mode may be defined when the
network/system is experiencing high levels of traffic and
therefore certain security selection may not be available
due to efficiency constraints. Emergency mode may be
defined as a situation that requires the highest level of
security or the lowest level dependent on the situation and
policy[16].

2.3.2 User Choices for Security Levels. Security
classification levels are a common metric used in the
government and DOD to distinguish authorization for
classified information. Common levels include Top
Secret, Secret, Classified and Unclassified. Each of these
levels correspond to different governing policies and
requirements associated with the threat to national
security by the disclosure of information to adversaries.
Likewise, security selection levels, as defined here for
proof of concept, represent an increasing requirement for
stronger security (e.g. encryption and authentication
algorithms).

Network security policies may utilize a range of
maximum and minimum-security levels for each variant
security service. Minimum-security levels set the lowest
acceptable security attributes and maximum-security
levels establish a ceiling on the use of available security
resources. Intersections of policies require further
granularity in security settings to satisfy all governing
users and systems. A user may also desire to select a

higher level of security than the predefined minimum
[15].

A user or application, however, may quickly become
overwhelmed with the security setting details, potentially
resulting in degraded security or performance. By
developing security definitions that encompass detailed
security settings required by users or applications, the
complexity of the selection process for the security
settings can be simplified to a reasonable level. One
approach would involve the use of the following Network
Security levels: high, medium and low [16]. ‘High’
security level would utilize strong levels of security
attributes, medium level, moderate level of security
attributes, and low level, low to no security attributes.
By implementing this approach the system security
resource manager or security engineer is responsible for
presetting security variables and ranges in accordance with
choices offered to users or applications. A mapping of
allowable security settings to security levels, providing a
range of selection or specific values, is required to
properly enforce the system security policy [15].

2.3 .3 Mapping Abstract Parameters to Security
Mechanism. A mapping of abstract dynamic parameters
to resident security mechanisms is required to properly
enforce policy decisions. For example, network modes
may be mapped to security level ranges and ultimately to
security attributes and settings.

Table 1. Mapping Security Policies to Security
Attributes. (From [1])

Network Mode Security Level Security Attributes

Low Encryption: None
Authentication: MD5

Medium Encryption: DES
Authentication: MD5

Normal

High Encryption: 3DES
Authentication: MD5

Low Encryption: None
Authentication: None

Medium Encryption: None
Authentication: None

Crisis

High Encryption: DES
Authentication: MD5

Low Encryption: 3DES
Authentication: MD5

Medium Encryption: 3DES
Authentication: SHA

Impacted

High Encryption: AES
Authentication: SHA

The security resource manager and security engineer
would define the network modes and security levels to
provide the users and applications with appropriate
security service as translated into QoSS choices. Once
defined, the complexity of the security mechanism and

security attribute selection is transparent to the user. (See
Figure 9)

2.4 Implementation Issues

Quality of Security Service (QoSS) provides us with a
mechanism to modulate the security settings and enhance
performance based on both necessity (e.g. threat) and
resource availability. It also provides us with a tool to
ensure that the minimum-security requirements of
applications and the network as proposed in the security
policy is not violated. Hence defining an adaptive security
policy based on network threat and performance
conditions is the key to optimal and secure utilization of
the network resources. Keynote provides one such policy
specification language but its practical implementation
with complex policy statements extremely difficult. An
abstraction for this language is therefore felt necessary. It
would use the power of Keynote for formal compliance
checking and at the same time be easy to use and
administer. This is dealt with in the following chapters in
detail.

3 Keynote Support for QoSS

The syntax and semantics of the Keynote language is
described in detail in RFC 2704 [3]. In this section a
brief overview of the language and the specific parts that
need emphasis will be highlighted. The language is used
for specifying application ‘policies,’ which govern the
actions that principals (entities that can be authorized to
perform actions) are authorized to perform. The language
provides the semantics for describing ‘actions,’ which are
operations with security consequences that are to be
controlled by the system. It is also used for specifying
‘credentials’, which allow principals to delegate
authorization to other principals.

Keynote assertions are divided into sections, called
‘fields’ that serve various semantic functions. Each field
starts with an identifying label at the beginning of a line,
followed by the “:” character and the fields contents.
There can be at most one field per line.
One mandatory field is required in all assertions:

• Authorizer
Six optional fields may also appear:

• Comment
• Conditions
• KeyNote-Version
• Licensees
• Local-Constants
• Signature

The conditions field is used to define a security
policy. This field gives the ‘conditions’ under which the
Authorizer1 trusts the Licensees2 to perform an action.

1 The Authorizer identifies the Principal issuing the assertion.

2 The Licensees identifies the principals authorized by the
assertion. More than one principal can be authorized, and
authorization can be distributed across several principals through the

The exact semantics of the field is defined in RFC 2704.
However parts of the language pertinent to our application
are explained below.

 Security attributes reside in the conditions section and
are expressed in the form of logical statements. The
conditions section’s syntax is similar to that of a
programming language “if statement”. The section is
usually broken into sub statements by using &&, ||, and
parenthesis to construct logical conditions. For example
the following phrase describes two security proposals
supporting Telnet services (service_port= 23) using ESP
with 3DES for encryption and finger services
(service_port=79) using AH with SHA for authentication:

(local_filter_port == “23” &&
esp_present == "yes" &&

 esp_enc_alg == "3des") ||
(local_filter_port == “79” &&

ah_present == "yes" &&
 ah_auth_alg == "sha") -> “true”;

Using the example in section 2(b) above, with security
levels “high” and “low” and network modes “normal” and
“impacted”, the condition phrase is expanded (From [1]).

Conditions: ((app_domain == "IPsec policy") && (
((network_mode = “normal” &&
((security_level = “high” &&
 ((local_filter_port == “23” &&

esp_present == "yes" &&
esp_enc_alg == "3des") ||

(local_filter_port == “79” &&
ah_present == "yes" &&

 ah_auth_alg == "sha"))) ||
((security_level = “low” &&
 ((local_filter_port == “23” &&

esp_present == "yes" &&
esp_enc_alg == "des") ||

(local_filter_port == “79” &&
ah_present == "yes" &&

 ah_auth_alg == "des-mac")))) ||
(network_mode = “impacted” &&
((security_level = “high” &&
 ((local_filter_port == “23” &&

esp_present == "yes" &&
esp_enc_alg == "aes") ||

(local_filter_port == “79” &&
ah_present == "yes" &&

 ah_auth_alg == "sha"))) ||
((security_level = “low” &&
 ((local_filter_port == “23” &&

esp_present == "yes" &&
esp_enc_alg == "3des") ||

(local_filter_port == “79” &&
ah_present == "yes" &&

 ah_auth_alg == "sha-md5")))) -> “true”;

use of `and' and threshold constructs.

As we notice the complexity of the language increases
exponentially as we add more ports and parameters to it.
The nesting of parenthesis to multiple levels makes
writing a syntactically correct policy file almost
impossible. In the following section, XML is analyzed to
see if the technology could be used to make the task of
specifying the Keynote policy file practical.

4 XML and Policy Representation

Extensible Markup Language (XML) [19] is a rapidly
maturing technology with powerful real-world
applications, particularly for the management, display and
organization of data. XML is a technology concerned with
the description and structuring of data. It is a subset of
Standard Generalized Markup Language (SGML), with
the same goals, but with much less complexity. XML is
not a language but a standard for creating languages that
meet the XML criteria. It describes a syntax that you use
to create your own languages [7].

Data is separated from presentation in XML. XML
structures the data, while style sheets format the data
presentation . That makes it easier to use the data for
multiple purposes. The same stylesheet can be used with
multiple documents to create a similar appearance among
them. Or alternatively multiple stylesheets can be applied
to an XML document to provide different forms of
presentation of the data. There are a variety of languages
that can be used to create stylesheets such as Extensible
Stylesheet Language Transformations (XSLT).

XML addresses the problem of data portability and
software maintenance. Programmers have been structuring
their data in an infinite variety of ways, and with every
new way of structuring data comes much experimentation
and testing to get it just right. If the data format changes,
the methodologies to manipulate it also have to change,
and the testing and tweaking has to begin again. The
cycle of software maintenance will start all over again.
With XML, there is a standardized way to structure the
data and to extract the information we need. The
extensibility of the language permits us to make changes
as we need, without having to adjust the code that
extracts information from the file.

4.1 XML DTDs and Schemas

The need to validate documents against a vocabulary
led the creators of XML to include a method of checking
validity in the XML recommendation. A document is
valid if its XML content complies with a definition of
allowable elements, attributes and other document pieces.
By utilizing special ‘Document Type Definition’ syntaxes
or DTDs, you can check the content of a document type
with a special parser. The Document Type Definition
(DTD) validation format has been used for many years to
validate SGML and XML documents. As the use of XML
and DTDs increased, some of the limitations of DTDs
surfaced. Though these limitations restrict their use,
DTDs are still useful for various applications.

However, with the release of XML schemas, a more
powerful mechanism for validating XML documents is
now available.

A Schema is the XML construct used to represent the
data elements, attributes, and their relationships as
defined in the data model. By definition, a DTD and a
schema are very similar [20]. However, DTDs usually
define simple, abstract text relationships, while schemas
define more complex and concrete data and application
relationships. A DTD doesn't use a hierarchical formation,
while a schema uses a hierarchical structure to indicate
relationships. XML Schema definitions are also
commonly referred to as XSD.

4.2 XSLT

XML lets us structure our data in a hierarchical
structure. This structure has some rigid rules and
following them enables us to use other XML tools to
access and manipulate the data without having to write
code for it. However the structure may not suit an
application and we may need an alternative representation
of the data for either presentation purposes or for the
purpose of manipulating it. Extensible Stylesheet
Language Transformations, XSLT, is a language which
can transform XML documents into any text-based
format, XML or otherwise. It is a sub-component of a
larger language called XSL [22]. XSL relies on finding
parts of an XML document that match a series of
predefined templates, and then applying transformation
and formatting rules to each matched part. Thus once an
XML document is created, XSLT can be used to
transform the document into whatever other format we
wish- HTML for display on web sites, a different XML-
based structure for other applications, or even just regular
text files.

Specifically, XSL is used to create stylesheets. An
XSL engine uses these stylesheets to transform XML
documents into other document types, and to format the
output. Stylesheets define the layout of the output
document and the location of the data in the source
document. That is, “retrieve data from this place in the
input document; make it look like this in the output”. In
XSL parlance, the input document is called the source
tree, and the output document the result tree.

4.3 Advantages of XML for the Policy
Specification Language

As described above we have a need to represent the
intended IPsec policy in a form separate from the native
KeyNote representation. Some of the advantages that
would accrue by using XML are as follows:

4.3.1 Tools. Use of XML for specification of the
KeyNote policy file lends itself to be used with the freely
available, verified, tested and user-friendly tools. These
tools include among others, XML editors, parsers,
validators, translators etc. The availability of such tools

and the extensive use of XML in modern communication
protocols and other programs will enable users to
manipulate XML files easily. Wide availability of such
tools will also help in creating and maintaining the policy
files over diverse systems without the need for an
application specific editor.

4.3.2 Security. Interest in XML in recent years has
resulted in huge investments in the field of XML
security. The XML security features such as XML
encryption and authentication will enhance the security of
the policy file. This will also help, for instance, in
selectively ‘digitally signing’ parts of the policy file.
Thus a person signing a particular part of the policy file
will only be responsible for the part he signed. Without
the XML format it would be possible only to sign the
entire file after for instance adding a part to it.

4.3.3 Platform Independence. It is possible to edit,
maintain and distribute the XML policy file across
different OS platforms.

4.3.4 Single Data Multiple Presentation. Once we
represent the policy in an XML format it is possible to
extract relevant information and present it in different
forms that are more intuitive and useful to the
administrator or the user. XSLT style sheets can be
written and associated with the policy file to generate
different presentation formats. Apart from presenting it in
a more understandable and probably graphic format this
will also help the administrator pin down any
inaccuracies/inconsistencies/contradictions in the policy
file. Intelligent agents can be written to audit the policy
file and signal the administrator for errors in the policy
file.

4.3.5 Consistency and Accuracy. XML Schemas and/or
DTDs can be used to validate the XML file to see if it
matches our specifications. Validating the policy file with
a well-defined schema will enable errors to be picked up.
This will trap all errors without having to go through the
entire file manually. The use of generic schema generators
and validators only makes this an easier task. This will
also enable users to verify policy files received across the
networks.

4.3.6 Extensible Format. An XML format will lend
itself to extend the policy file to cater to new
requirements in the policy file that come up in the future.
Additional tags can be defined for elements and attributes
as and when the need to incorporate them arises. This
would not require changes to the application code as long
as the structure of the document is maintained.

4.3.7 Ease of Use. The hierarchical nature of XML layout
results in an easy to use and easy to manipulate format. It
makes the file more modular and more easily
understandable.

4.3.8 Semantic Content Use. The semantic content of
the policy file enables future deployment of intelligent
agents or roaming agents that can read policy files and

report problems, and that can resolve conflicts between
multiple systems by highlighting for instance the
difference in the policies between them.

4.4 Integrating XML and Keynote Policy

The Keynote engine requires that the assertions,
credentials and the policy files be specified in the syntax
as specified in RFC 2704 and examined in section ‘A’
above. This structure restricts our ability to define any
meaningful network security policy in an error free
manner. Further, any policy file received in this format is
not human readable, thus establishing a daunting
requirement to verify its correctness and to detect security
loopholes if any. Thus there is a clear problem of
differentiation between data content and its representation.
The same data is required by the Keynote engine in one
format while on the other hand the format is not suited
for human interpretation and validation. Specifying the
policy data in an XML format enables us to use XSL to
translate the data to any format needed, such as a more
human readable form. Further specifying an XML Schema
would provide us the benefit of validating the XML
policy file for correctness prior to its transformation.

5 Design and Implementation

The first challenge to using XML for security policy
specification was to determine an alternate representation
of the policy logic in the form of an XML user policy
file. The overall approach was to develop a format for the
user policy file and then create a style sheet to transform
it to the native KeyNote policy file format. This approach
also provides the flexibility of later being able to extract
useful administrative information from the user policy
file.

Arriving at a format for the user policy file is a
challenging task and there are multiple options available.
The primary requirement is that the resulting XML file be
well formed. During this research, multiple formats were
considered. Each had its strengths and shortcomings. For
instance one format would lend itself to an easy
application design while another would permit more
semantic content in the file format. The former therefore
makes it easier to write an application such as a ‘Policy
Editor’ while the latter results in a more descriptive self-
defining file, which could be a good interchange format
between multiple applications. However we realized that
the specific format is not so significant as long as it has
sufficient semantic content to be understandable. This
results because the choice of element tag names, their
sequence etc. is a personal preference: the power of XSL
is always available for another user who wishes to use an
alternative format. Thus arriving at a well annotated, self-
defining and logical policy file format was the endeavor.

The XML User Policy file format we decided on is
illustrated in the following example:

<Conditions>
<ApplicationDomain app_domain="IPsec policy">

<NetworkMode network_mode="normal">
<SecurityLevel security_level="low">

<Port local_filter_port="21"
 remote_filter_port="21">

<Encapsulation esp_present="yes">
<EncryptionAlgorithm esp_enc_alg="des" />
<EncryptionAlgorithm esp_enc_alg="des3" />

</Encapsulation>
</Port>
<Port local_filter_port="23"

 remote_filter_port="23">
<Encapsulation esp_present="yes">

<EncryptionAlgorithm esp_enc_alg="des3" />

<EncryptionAlgorithm esp_enc_alg="aes" />
</Encapsulation>

<Ah ah_present="yes">
<AuthenticationAlgorithm

 ah_auth_alg="hmac-sha" />
<AuthenticationAlgorithm

 ah_auth_alg="des-mac" />
</Ah>

</Port>
</SecurityLevel>
<SecurityLevel security_level="medium">

<Port local_filter_port="21"
 remote_filter_port="21">

<Encapsulation esp_present="yes">
<EncryptionAlgorithm esp_enc_alg="des3" />
<EncryptionAlgorithm

 esp_enc_alg="des-iv32" />
</Encapsulation>

</Port>
</SecurityLevel>
<SecurityLevel security_level="high" />

</NetworkMode>
<NetworkMode network_mode="impacted">

<SecurityLevel security_level="low" />
<SecurityLevel security_level="medium" />
<SecurityLevel security_level="high" />

</NetworkMode>
<NetworkMode network_mode="crisis">

<SecurityLevel security_level="low" />
<SecurityLevel security_level="medium" />
<SecurityLevel security_level="high" />

</NetworkMode>
</ApplicationDomain>

</Conditions>
<Dummy><![CDATA[

]]></Dummy>
</Policy>

Having arrived at the XML policy file format, XSL
stylesheets are used to transform the policy file into the
desired formats. Two stylesheets were designed using
XSLT (Refer Figure 4).

Figure 4. XSL Transformation of XML Policy Data
in the User Policy File.

 A stylesheet was created for transforming the file to
the Keynote policy file format. An alternative stylesheet
to transform the XML policy file to a more human
readable, graphical web based format was also written.
The transformed output of the XML Policy file using this
template is shown in Figure 9.

5.1 Java based GUI

Though XML provides us with the flexibility to edit
the policy file in any XML editor, it would still be
convenient to provide a graphical user interface to
manipulate the policy file. This would help in
eliminating inadvertent errors and would also provide an
automated entry into multiple elements without the need
to edit each element content. This would enable global
policy decisions to be applied throughout the policy file.
An experienced system administrator could still capitalize
on the use of the XML policy format and edit the file in
the absence of the graphical user interface (GUI).

A Java-based GUI was therefore built to integrate
various components of the software [10]. Drop down
menus and dialog boxes guide the user to input various
parameters required for the policy file. To enable
maintenance of the GUI, called the Policy-Editor, a
separate XML configuration file was used to feed the data
for various drop down menus and combo/list boxes. This
decoupling of the Java code from the configuration data
will enable continued use of the Policy-Editor without the
need to modify the Java code.

Figures 5 through 8 are screen shots of the Policy
Editor. Figure 5 and Figure 6 select ports, and operational
modes and security levels in the construction of a security
policy. Figures 7 and 8 show the granular settings of
encryption and authentication for particular ports. Figure
9 shows how the XSL transformation of the resulting
policy file displays the policy in a graphical and more
intuitive format.

Figure 5. Managing Ports in the Admin Module.

Figure 6. Admin Mode Settings for Security Level
and Op Modes

Figure 7. Encryption Settings For Individual Ports

Figure 8. Authentication Settings for AH Mode
Heading should be with figure

 In addition to the polciy editor a generic XML editor,
such as XML Spy (Copyright ©1998-2002 Altova
GmbH) can be used to view and edit an XML Policy file.
Figure 10 is a screen shot depicting the use of XML Spy
editor to manipulate the XML Policy file directly. The
result of schema validation can also be seen here. Figure
11 is the design view of the schema when viewed in
XML Spy.

The security policy management toolkit is comprised
of the Java based Policy-Editor and an XML editor such
as XML Spy, XML Notepad, etc. The XML editors are
not essential, but can aid in file manipulation, their
transformation to multiple forms, and validation of
schemas.

6 Future Work

Security policy management is a vast area and our
work can be complemented with additional work in a
number of areas to provide better tools for policy
management. Listed below are several major items that
will require attention.

6.1 Policy File Format

The XML policy file format currently specified could
benefit from a more elaborate format with tags for other
parameters. XML Namespaces and XML vocabularies
could be utilized for a more comprehensive policy format
[21]. Examples could involve incorporating other
parameters such as algorithm key length, time-of-day
parameters etc. The policy format should be able to
accommodate other Boolean operators such as inequality
definitions (<, >, !=) in the security policy
management mechanism. For example, esp_enc_alg >
DES could imply 3DES and AES if we have an ordering
for the ‘security strength’ of each algorithm. Global
policy statements such as encryption in crisis mode <
3DES, etc. should be possible. Inclusion of IP addresses

in policy statements should also be made possible. These
concepts have been demonstrated in the implementation.
Addition of more parameters as stated above would
however open up possibilities for inconsistencies in
policy statements and the same will have to be carefully
and formally worked out.

6.2 Schema Design and RELAX NG

W3C XML Schemas are complicated and hard to
formulate. The schema generated in this work was
automatically generated by XML Spy and modified
manually to suit our current requirement. This schema
language is very complex and permits us to define
complex content models. The schema for instance could
be made more specific or more general. This would
depend on how we intend to formulate the policy
statements. Future work could therefore focus on how a
detailed policy encompassing various parameters such as
IP addresses, encryption attributes etc could be specified.
The interrelationship between different elements could
also be specified, such as if ‘Crisis’ mode uses encryption
then so should ‘Normal’ and ‘Impacted’ mode. In
exploring more usage of Schema, alternate schema
languages such as RELAX NG could be tried. This new
language is gaining popularity due its simplicity and
robustness. RELAX NG is the result of merging two
popular schema languages: RELAX and TREX. The
RELAX NG language is very similar to the W3C XML
Schema language. RELAX NG has a much stronger
foundation in mathematical models, which allows
programmers to create highly optimized validation tools.
In addition, RELAX NG omits many features that make
W3C XML Schemas difficult to learn. RELAX NG, like
W3C XML Schemas, is written in an XML Syntax and
requires you to define the allowable elements and
attributes within your instance documents. RELAX NG
can be found on the Web at http://relaxng.org.

6.3 Policy Editor Enhancements

The policy editor interface, though complete and
functional, can be improved upon. The particular
improvements envisioned are as follows:

6.3.1 Data Binding. Data Binding is a concept where
XML data can be read into applications as objects. By
accessing the data as Java objects, manipulation becomes
faster and managing large policy files would not slow
down the system. Through the use of data binding the
policy editor could be made more efficient and faster.

6.3.2 Global policy settings. The policy editor could be
modified to enable global policy settings. For instance we
could have a statement such as all ports should have a
minimum encryption of DES or the maximum encryption
algorithm for Crisis mode should not exceed 3DES etc.
The global settings option could enter the default settings
for all permissible ports and then more granular changes
could be made.

6.3.3 Help. Help to guide the user to form syntactically
correct policy statements and correct use of GUI could
make the editor more complete. Context sensitive help
could also be added.

6.3.4 Translation and viewing XML. XML translation
and viewing currently need the help of any general
purpose XML editor. Using Java packages such as Javax,
the same could be incorporated into the GUI thus
dispensing the need for XML editors for translation.

6.3.5 Schema validation. Validation of the XML
document against DTD and Schema need to be
incorporated into the GUI. The same is currently done
using an XML tool such as XML Spy.
DOM/JDOM/SAX could be used for the purpose.

6.3.6 Inconsistency and contradiction checks. As the
policy file is extended to include global parameters and
overlapping rules apply to a particular port or application,
inconsistencies and contradictions would begin to emerge.
The same would have to be considered and avoided.
Various XML tools could help in achieving this.
Distributed IPsec policy when considered would also give
rise to multiple issues of policy consistencies.

6.3.7 Improvement in the look and feel of the user
interface. The look and feel of the editor can always be
improved to cater for user preferences and to avoid
chances of introducing inadvertent errors. Context
sensitive tool tips, toolbars and help could all be
incorporated into the policy editor to give it a complete
look.

6.4 XML Interface to Keynote.

It is felt that extending the XML policy language
specified here to a broader XML specification and
providing an XML processor in the Keynote engine itself
would greatly enhance the use of Keynote. This would
probably reduce the overhead of parsing in Keynote and
provide the power of XML for better auditing and
dynamic management of trust. XML security features
could also be incorporated. For instance using XML
signature, a user can sign for parts of the XML document
i.e. a subset of the ‘Elements’. Thus making him
accountable for the parts signed by him only. By
providing an XML interface to Keynote, application users
could define their own versions of the policy language
and use XSL for translating it into the desired Keynote
format, which would be trivial, or alternatively they could
use the vocabulary specified in the Keynote specifications.

7 Conclusion

Security policy management is a critical issue in the
management of computer and networking resources. IPsec
and Keynote provide a mechanism to implement a
granular security policy. Previous research in the area of
‘Quality of Security Service’ demonstrates how an
adaptive security policy can provide enhanced security
with optimal utilization of network resources. The only

missing link in the process is the difficulty in specifying
a well-defined, granular, error free and consistent security
policy in the language understood by the Keynote trust
management engine. We have presented a solution to this
problem in the form of an easy to use yet powerful
security policy editor. The work demonstrates that use of
XML technology as a middle layer provides us with a
means to combine the security of Keynote with the
simplicity of a policy editor. This novel approach also
provides us all the benefits of XML, such as XSL and
XML security. While XSL was extensively used, XML
security tools could be used as follow up future work.

References
[1] Agar, C. Dynamic Parameterization of IPsec, Master of
Science Thesis, Department of Computer Science, Naval
Postgraduate School, December 2001.

[2] Keromytis, A. D., Ioannidis, J. and Smith, J. M.,
Implementing IPsec, In Proceedings of the IEEE Global
Internet (GlobeCom) 1997, pp. 1948 - 1952. November 1997,
Phoenix, AZ.

[3] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis,
A. D, The KeyNote Trust Management System Version 2, (RFC
2704, Network Working Group, September 1999,
http://www.ietf.org/rfc/rfc2404.txt

[4] Blaze, M., Feigenbaum, J., and Keromytis, A. D.,
KeyNote: Trust Management for Public-Key Infrastructures,
In Proceedings of the 1998 Security Protocols International
Workshop, Springer LNCS vol. 1550, pp. 59 - 63. April 1998,
Cambridge, England. Also AT&T Technical Report 98.11.1.

[5] Blaze, M., Ioannidis, J. and Keromytis, A. D. Trust
Management and Network Security Protocols, In
Proceedings of the 1999 Security Protocols International
Workshop, April 1999, Cambridge, England.

[6] Blaze, M., Ioannidis, J. and Keromytis, A. D., Trust
Management for IPsec, In Proceedings of the Internet Society
Symposium on Network and Distributed Systems Security
(SNDSS) 2001, pp. 139 - 151. February 2001, San Diego, CA.

[7] Hunter, D., Cagle, K., Dix, C., Kovack,R., Pinnock, J., and
Rafter, J., Beginning XML 2nd Edition , Wrox Press Ltd,2002.

[8] Doraswamy, N. and Harkins, D., IPsec The New Security
Standard for the Internet, Intranets, and the Virtual Private
Networks, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1999.

[9] Irvine, C.E. and Levin, T., Quality of Security Service,
Proceedings of the New Security Paradigms Workshop, Cork,
Ireland, September 2000

[10] Java 2 Standard Edition, V1.2.2 API Specification,
http://java.sun.com/products/jdk/1.2/docs/api/, Sun
Microsystems, Inc., 1999.

[11] Kent, S and Atkinson, R, Security Architecture for the
Internet Protocol, RFC2401, Network Working Group,
November 1998, http://www.ietf.org/rfc/rfc2401.txt

[12] Leiseboer, J., IPSEC – Security Architecture for IP, Part
2: Security Association,
http://www.chipcenter.com/eexpert/jleiseboer/jleiseboer036.

html, ChipCenter: The Web's Definitive Electronics
Resource, Modified 12/05/2001.

[13] Maughan, D., Schertler, M., Schneider M., Turner J.,
Internet Security Association and Key Management Protocol
(ISAKMP), RFC 2408, Network Working Group, November
1998, http://www.ietf.org/rfc/rfc2409.txt

[14] Mohan, R., XML Based Adaptive Policy Management in
a Trust Management System Context, Masters Thesis, Naval
Postgradute School, Monterey, CA, September 2002.

[15] Spyropoulou, E.., Agar, C. D., Levin, T., and Irvine, C.,
IPsec Modulation for the Quality of Security Service, NPS-
CS-02-001, Naval Postgraduate School, Monterey, CA,
January 2002.

[16] Spyropoulou, E.., Levin, T., and Irvine, C.,
Demonstration of Quality of Security Service Awareness for
IPsec, NPS-CS-02-003, Naval Postgraduate School, January
2002.

[17] Thayer, R., Doraswamy,N., and Glenn, R., IP Security
Document Roadmap, RFC 2411, Network Working Group,
November 1998, http://www.ietf.org/rfc/rfc2411.txt

[18] Using IPsec (Internet Security Protocol),
http://www.openbsd.org/faq/faq13.html, October 2001.

[19] XML Specification, http://www.w3.org/TR/2000/REC-
xml-20001006 , Aug 2002

[20] XML Schema specifications,
http://www.w3.org/TR/xmlschema-0 , Aug 2002

[21] XML Namespace Recommendation,
http://www.w3.org/TR/REC-xml-names/

[22] XSLT Specifications, http://www.w3.org/TR/xslt , Aug
2002 RFC2396

Figure 9. XSL Transformation of the Policy File

Figure 10. Editing and Validation of XML Policy File Using XML Sp

Figure 11. Schema Design View of the XML Policy Document

